Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.732
Filter
1.
Sci Rep ; 14(1): 10241, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702365

ABSTRACT

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Cofilin 1 , Monocytes , Monocytes/metabolism , Humans , Cofilin 1/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , Actins/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , THP-1 Cells
2.
ACS Chem Neurosci ; 15(10): 2028-2041, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710594

ABSTRACT

Chronic cerebral hypoperfusion (CCH)-triggered blood-brain barrier (BBB) dysfunction is a core pathological change occurring in vascular dementia (VD). Despite the recent advances in the exploration of the structural basis of BBB impairment and the routes of entry of harmful compounds after a BBB leakage, the molecular mechanisms inducing BBB impairment remain largely unknown in terms of VD. Here, we employed a CCH-induced VD model and discovered increased vascular cell adhesion molecule 1 (VCAM1) expression on the brain endothelial cells (ECs). The expression of VCAM1 was directly correlated with the severity of BBB impairment. Moreover, the VCAM1 expression was associated with different regional white matter lesions. Furthermore, a compound that could block VCAM1 activation, K-7174, was also found to alleviate BBB leakage and protect the white matter integrity, whereas pharmacological manipulation of the BBB leakage did not affect the VCAM1 expression. Thus, our results demonstrated that VCAM1 is an important regulator that leads to BBB dysfunction following CCH. Blocking VCAM1-mediated BBB impairment may thus offer a new strategy to treat CCH-related neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Animals , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Brain/metabolism , Brain/pathology , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Humans , Brain Ischemia/metabolism , Brain Ischemia/pathology , Mice
3.
J Transl Med ; 22(1): 412, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693516

ABSTRACT

BACKGROUND: Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS: Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS: Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-ß1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS: Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.


Subject(s)
ADAMTS13 Protein , Myocardial Infarction , von Willebrand Factor , Animals , von Willebrand Factor/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/complications , ADAMTS13 Protein/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Plaque, Atherosclerotic/pathology , P-Selectin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Molecular Imaging , Aorta/pathology , Aorta/drug effects , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Mice, Inbred C57BL
4.
Atherosclerosis ; 392: 117519, 2024 May.
Article in English | MEDLINE | ID: mdl-38581737

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Subject(s)
Aorta , Atherosclerosis , Disease Models, Animal , Disease Progression , Glucuronidase , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Glucuronidase/metabolism , Aorta/pathology , Aorta/metabolism , Aorta/enzymology , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/metabolism , Diet, High-Fat , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Mice, Inbred C57BL , Male , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Mice, Knockout , Sinus of Valsalva/pathology , Necrosis
5.
J Cell Biochem ; 125(5): e30563, 2024 May.
Article in English | MEDLINE | ID: mdl-38591551

ABSTRACT

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Subject(s)
Endothelial Cells , Glucose , Heme Oxygenase-1 , Myocytes, Smooth Muscle , Reactive Oxygen Species , Stress, Mechanical , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Glucose/metabolism , Glucose/pharmacology , Myocytes, Smooth Muscle/metabolism , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Cell Proliferation , Coculture Techniques , Enzyme Activation , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Intercellular Adhesion Molecule-1/metabolism
6.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612857

ABSTRACT

Endothelial wound-healing processes are fundamental for the maintenance and restoration of the circulatory system and are greatly affected by the factors present in the blood. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) induces the proinflammatory activation of endothelial cells and is able to cooperate with other proinflammatory activators. Our aim was to investigate the combined effect of mechanical wounding and MASP-1 on endothelial cells. Transcriptomic analysis showed that MASP-1 alters the expression of wound-healing-related and angiogenesis-related genes. Both wounding and MASP-1 induced Ca2+ mobilization when applied individually. However, MASP-1-induced Ca2+ mobilization was inhibited when the treatment was preceded by wounding. Mechanical wounding promoted CREB phosphorylation, and the presence of MASP-1 enhanced this effect. Wounding induced ICAM-1 and VCAM-1 expression on endothelial cells, and MASP-1 pretreatment further increased VCAM-1 levels. MASP-1 played a role in the subsequent stages of angiogenesis, facilitating the breakdown of the endothelial capillary network on Matrigel®. Our findings extend our general understanding of endothelial wound healing and highlight the importance of complement MASP-1 activation in wound-healing processes.


Subject(s)
Endothelial Cells , Mannose-Binding Protein-Associated Serine Proteases , Mannose-Binding Protein-Associated Serine Proteases/genetics , Vascular Cell Adhesion Molecule-1 , Wound Healing , Complement System Proteins
7.
Commun Biol ; 7(1): 483, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643279

ABSTRACT

Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Mice , Animals , Bone Marrow/pathology , Leukemia, Myeloid, Acute/pathology , Acute Disease , Vascular Cell Adhesion Molecule-1 , Tumor Microenvironment
8.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623655

ABSTRACT

BACKGROUND: A typical non-neoplastic connective tissue proliferations called a pyogenic granuloma. A vascular adhesion molecule used to assess angiogenesis is the CD34 marker. The primary memberof a family of growth factors, VEGF helps in generating and maintaining the lymphatic and blood circulation systems. OBJECTIVE: The aim of the study was to know the correlation between VEGF and CD34 protein marker and pyogenic granuloma. METHODS: Thirty-one formalin fixed paraffin embedded (FFPE) blocks were taken from female pyogenic granuloma patients ranging in age from 29 to 70. The IHC was used to identify VEGF and CD34 expression in the cytoplasm of the cells. RESULTS: Seventeenout of 31 patients had VEGF positive expression. Twenty-sixout of 31 had CD34 positive expression and 5 with no expression (negative expression). Brown-stained cytoplasm showed high VEGF and CD34 expression, whereas blue stained cytoplasm showed no VEGF and CD34 expression in these cells. CONCLUSIONS: The results suggest the role of suchbiomarkers in the oral pyogenic granuloma pathogenesis, and it appears that CD34 and VEGF are valuable biomarkers in evaluating vascular and inflammatory diseases like pyogenic granuloma.


Subject(s)
Granuloma, Pyogenic , Humans , Female , Granuloma, Pyogenic/diagnosis , Granuloma, Pyogenic/etiology , Granuloma, Pyogenic/metabolism , Vascular Endothelial Growth Factor A , Vascular Cell Adhesion Molecule-1 , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Antigens, CD34
9.
PLoS One ; 19(4): e0296863, 2024.
Article in English | MEDLINE | ID: mdl-38603717

ABSTRACT

INTRODUCTION: Known to have pleiotropic functions, high-density lipoprotein (HDL) helps to regulate systemic inflammation during sepsis. As preserving HDL-C level is a promising therapeutic strategy for sepsis, the interaction between HDL and sepsis worth further investigation. This study aimed to determine the impact of sepsis on HDL's anti-inflammatory capacity and explore its correlations with disease severity and laboratory parameters. METHODS AND MATERIALS: We enrolled 80 septic subjects admitted to the intensive care unit and 50 controls admitted for scheduled coronary angiography in this cross-sectional study. We used apolipoprotein-B depleted (apoB-depleted) plasma to measure the anti-inflammatory capacity of HDL-C. ApoB-depleted plasma's anti-inflammatory capacity is defined as its ability to suppress tumor necrosis factor-α-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human umbilical-vein endothelial cells. A subgroup analysis was conducted to investigate in septic subjects according to disease severity. RESULTS: ApoB-depleted plasma's anti-inflammatory capacity was reduced in septic subjects relative to controls (VCAM-1 mRNA fold change: 50.1% vs. 35.5%; p < 0.0001). The impairment was more pronounced in septic subjects with than in those without septic shock (55.8% vs. 45.3%, p = 0.0022). Both associations were rendered non-significant with the adjustment for the HDL-C level. In sepsis patients, VCAM-1 mRNA fold change correlated with the SOFA score (Spearman's r = 0.231, p = 0.039), lactate level (r = 0.297, p = 0.0074), HDL-C level (r = -0.370, p = 0.0007), and inflammatory markers (C-reactive protein level: r = 0.441, p <0.0001; white blood cell: r = 0.353, p = 0.0013). CONCLUSION: ApoB-depleted plasma's anti-inflammatory capacity is reduced in sepsis patients and this association depends of HDL-C concentration. In sepsis patients, this capacity correlates with disease severity and inflammatory markers. These findings explain the prognostic role of the HDL-C level in sepsis and indirectly support the rationale for targeting HDL-C as sepsis treatment.


Subject(s)
Endothelial Cells , Sepsis , Humans , Cholesterol, HDL , Cross-Sectional Studies , Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1 , Lipoproteins, HDL , Apolipoproteins B , Anti-Inflammatory Agents , RNA, Messenger
10.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673738

ABSTRACT

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Subject(s)
Atherosclerosis , Fruit , Human Umbilical Vein Endothelial Cells , Photinia , Plant Extracts , Photinia/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Atherosclerosis/drug therapy , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Anthocyanins/pharmacology , Anthocyanins/chemistry , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Interleukin-6/metabolism , Interleukin-6/genetics
11.
High Blood Press Cardiovasc Prev ; 31(2): 113-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38630421

ABSTRACT

INTRODUCTION: Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM: This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS: A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS: 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS: CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.


Subject(s)
Dietary Supplements , Endothelium, Vascular , Ubiquinone , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Randomized Controlled Trials as Topic , Treatment Outcome , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Vascular Cell Adhesion Molecule-1/blood , Vascular Cell Adhesion Molecule-1/metabolism , Vasodilation/drug effects
13.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454606

ABSTRACT

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Ischemic Stroke , Liposomes , Nanoparticles , Vascular Cell Adhesion Molecule-1 , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Animals , Mice , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Nanoparticles/chemistry , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Lipids/chemistry , Drug Delivery Systems/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Humans
14.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38498701

ABSTRACT

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Subject(s)
Neutrophils , Stroke , Vascular Cell Adhesion Molecule-1 , Venous Thrombosis , Animals , Venous Thrombosis/metabolism , Venous Thrombosis/etiology , Neutrophils/metabolism , Mice , Humans , Vascular Cell Adhesion Molecule-1/metabolism , Stroke/metabolism , Stroke/etiology , Disease Models, Animal , Neutrophil Activation , Cell Adhesion , Integrins/metabolism , Mice, Knockout , Male
15.
J Am Heart Assoc ; 13(6): e032213, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38497480

ABSTRACT

BACKGROUND: Although VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) have been associated with incident heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF), the associations of VCAM-1 and ICAM-1 with sensitive measures of cardiac structure/function are unclear. The objective of this study is to evaluate associations between VCAM-1, ICAM-1, and measures of cardiac structure and function as potential pathways through which cellular adhesion molecules promote HFpEF and AF risk. METHODS AND RESULTS: In MESA (Multi-Ethnic Study of Atherosclerosis), we evaluated the associations of circulating VCAM-1 and ICAM-1 at examination 2 (2002-2004) with measures of cardiac structure/function on cardiac magnetic resonance imaging at examination 5 (2010-2011) after multivariable adjustment. Mediation analysis of left atrial (LA) strain on the association between VCAM-1 or ICAM-1 and AF or HFpEF was also performed. Overall, 2304 individuals (63±10 years; 47% men) with VCAM-1 or ICAM-1, cardiac magnetic resonance imaging, and covariate data were included in analysis. Higher VCAM-1 and ICAM-1 were associated with lower LA peak longitudinal strain and worse global circumferential left ventricular strain but were not associated with left ventricular myocardial scar or interstitial fibrosis. Lower LA peak longitudinal strain mediated 8% (95% CI, 2-30) of the relationship between VCAM-1 and HFpEF and 9% (95% CI, 2-21) of the relationship between VCAM-1 and AF. CONCLUSIONS: Higher VCAM-1 and ICAM-1 were associated with lower LA function and left ventricular systolic function but were not associated with myocardial scar or interstitial fibrosis. VCAM-1 and ICAM-1 may promote HFpEF and AF risk through impaired LA reservoir function.


Subject(s)
Atrial Fibrillation , Heart Failure , Female , Humans , Male , Cicatrix , Intercellular Adhesion Molecule-1 , Stroke Volume , Vascular Cell Adhesion Molecule-1 , Middle Aged , Aged
16.
Int J Biol Macromol ; 266(Pt 1): 130637, 2024 May.
Article in English | MEDLINE | ID: mdl-38490396

ABSTRACT

Acute lung injury (ALI) is a prevalent and critical condition in clinical practice. Although certain pharmacological interventions have demonstrated benefits in preclinical studies, none have been proven entirely effective thus far. Therefore, the development of more efficient treatment strategies for ALI is imperative. In this study, we prepared nanostructured lipid carriers (NLCs) conjugated with anti-VCAM-1 antibodies to encapsulate melatonin (MLT), resulting in VCAM/MLT NLCs. This approach aimed to enhance the distribution of melatonin in lung vascular endothelial cells. The VCAM/MLT NLCs had an average diameter of 364 nm, high drug loading content, and a sustained drug release profile. Notably, the NLCs conjugated with anti-VCAM-1 antibodies demonstrated more specific cellular delivery mediated by the VCAM-1 receptors, increased cellular internalization, and enhanced accumulation in lung tissues. Treatment with VCAM/MLT NLCs effectively alleviated pulmonary inflammation by activating NLRP3 inflammasome-dependent pyroptosis through up-regulation of Sirtuin 1. Our findings suggest that VCAM/MLT NLCs demonstrate remarkable therapeutic effects on ALI in both in vitro and in vivo settings, making them a promising and efficient treatment strategy for ALI.


Subject(s)
Acute Lung Injury , Melatonin , Nanostructures , Vascular Cell Adhesion Molecule-1 , Animals , Humans , Male , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Drug Carriers/chemistry , Inflammasomes/metabolism , Lipids/chemistry , Melatonin/pharmacology , Melatonin/administration & dosage , Nanostructures/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Signal Transduction/drug effects , Sirtuin 1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
17.
Molecules ; 29(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542876

ABSTRACT

Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway's inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation.


Subject(s)
Acute Lung Injury , Chive , Drugs, Chinese Herbal , Saponins , Humans , Animals , Mice , NF-kappa B/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Saponins/pharmacology , Lipopolysaccharides/toxicity , Inflammation/drug therapy , Inflammation/prevention & control , Human Umbilical Vein Endothelial Cells , Tumor Necrosis Factor-alpha/pharmacology , Acute Lung Injury/drug therapy , Inflammation Mediators/metabolism
18.
J Extracell Vesicles ; 13(3): e12423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491216

ABSTRACT

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common life-threatening syndrome with no effective pharmacotherapy. Sepsis-related ARDS is the main type of ARDS and is more fatal than other types. Extracellular vesicles (EVs) are considered novel mediators in the development of inflammatory diseases. Our previous research suggested that endothelial cell-derived EVs (EC-EVs) play a crucial role in ALI/ARDS development, but the mechanism remains largely unknown. Here, we demonstrated that the number of circulating EC-EVs was increased in sepsis, exacerbating lung injury by targeting monocytes and reprogramming them towards proinflammatory macrophages. Bioinformatics analysis and further mechanistic studies revealed that vascular cell adhesion molecule 1 (VCAM1), overexpressed on EC-EVs during sepsis, activated the NF-κB pathway by interacting with integrin subunit alpha 4 (ITGA4) on the monocyte surface, rather than the tissue resident macrophage surface, thereby regulating monocyte differentiation. This effect could be attenuated by decreasing VCAM1 levels in EC-EVs or blocking ITGA4 on monocytes. Furthermore, the number of VCAM1+ EC-EVs was significantly increased in patients with sepsis-related ARDS. These findings not only shed light on a previously unidentified mechanism underling sepsis-related ALI/ARDS, but also provide potential novel targets and strategies for its precise treatment.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Monocytes , Sepsis , Vascular Cell Adhesion Molecule-1 , Humans , Acute Lung Injury/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Monocytes/metabolism , Respiratory Distress Syndrome/metabolism , Sepsis/complications , Sepsis/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
19.
Taiwan J Obstet Gynecol ; 63(2): 178-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485312

ABSTRACT

OBJECTIVE: Endometriosis is an estrogen-dependent chronic inflammatory disease in women of reproductive age. A review of the literature revealed that cytokines and inflammatory factors are associated with endometriosis-associated infertility. Interleukin 33 (IL-33) is a strong inducer of other pro-inflammatory cytokines. Vascular cell adhesion molecule-1 (VCAM-1) plays a central role in recruiting inflammatory cells, whose expression facilitates leukocyte adhesion and is rapidly induced by pro-inflammatory cytokines. Many studies have indicated that VCAM-1 expression is high in endometriosis; however, whether the expression of VCAM-1 is related to IL-33 is unclear. MATERIALS AND METHODS: Human ovarian endometriotic stromal cells (hOVEN-SCs) were treated with IL-33 to enable investigation of cell characterization, gene and protein expression, and signal pathways. Proliferation potential was measured using an MTT assay. Gene expression was analyzed using reverse transcription-polymerase chain reaction. Protein expression assay was performed using western blot analysis. RESULTS: This study investigated the effects of IL-33 on VCAM-1 and COX-2 expression in hOVEN-SCs. First, the results revealed that the IL-33/ST2/mitogen-activated protein kinase (MAPK) signaling pathway could increase the expression of VCAM-1 and COX-2 in hOVEN-SCs. Second, we discovered that COX-2 expression was essential for IL-33-induced VCAM-1 expression because the effects could be negated through NS398, a selective COX-2 inhibitor. Finally, treatment of IL-33-treated hOVEN-SCs with celecoxib significantly and dose-responsively decreased VCAM-1 expression. CONCLUSION: Taken together, these results indicate that IL-33 can upregulate VCAM-1 expression in hOVEN-SCs through the IL-33/ST2/MAPK/COX-2 signaling pathway and thereby contribute to endometriosis.


Subject(s)
Endometriosis , Vascular Cell Adhesion Molecule-1 , Humans , Female , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/pharmacology , Celecoxib/metabolism , Celecoxib/pharmacology , Interleukin-33/metabolism , Cyclooxygenase 2/metabolism , Endometriosis/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Stromal Cells/metabolism , Cells, Cultured
20.
J Transl Med ; 22(1): 263, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462608

ABSTRACT

BACKGROUND: Angiopoietin-like protein 3 (ANGPTL3) is secreted by hepatocytes and inhibits lipoprotein lipase and endothelial lipase activity. Previous studies reported the correlation between plasma ANGPTL3 levels and high-density lipoprotein (HDL). Recently ANGPTL3 was found to preferentially bind to HDL in healthy human circulation. Here, we examined whether ANGPTL3, as a component of HDL, modulates HDL function and affects HDL other components in human and mice with non-diabetes or type 2 diabetes mellitus. METHODS: HDL was isolated from the plasma of female non-diabetic subjects and type-2 diabetic mellitus (T2DM) patients. Immunoprecipitation, western blot, and ELISA assays were used to examine ANGPTL3 levels in HDL. Db/m and db/db mice, AAV virus mediated ANGPTL3 overexpression and knockdown models and ANGPTL3 knockout mice were used. The cholesterol efflux capacity induced by HDL was analyzed in macrophages preloaded with fluorescent cholesterol. The anti-inflammation capacity of HDL was assessed using flow cytometry to measure VCAM-1 and ICAM-1 expression levels in TNF-α-stimulated endothelial cells pretreated with HDL. RESULTS: ANGPTL3 was found to bind to HDL and be a component of HDL in both non-diabetic subjects and T2DM patients. Flag-ANGPTL3 was found in the HDL of transgenic mice overexpressing Flag-ANGPTL3. ANGPLT3 of HDL was positively associated with cholesterol efflux in female non-diabetic controls (r = 0.4102, p = 0.0117) but not in female T2DM patients (r = - 0.1725, p = 0.3224). Lower ANGPTL3 levels of HDL were found in diabetic (db/db) mice compared to control (db/m) mice and were associated with reduced cholesterol efflux and inhibition of VCAM-1 and ICAM-1 expression in endothelial cells (p < 0.05 for all). Following AAV-mediated ANGPTL3 cDNA transfer in db/db mice, ANGPTL3 levels were found to be increased in HDL, and corresponded to increased cholesterol efflux and decreased ICAM-1 expression. In contrast, knockdown of ANGPTL3 levels in HDL by AAV-mediated shRNA transfer led to a reduction in HDL function (p < 0.05 for both). Plasma total cholesterol, total triglycerides, HDL-c, protein components of HDL and the cholesterol efflux function of HDL were lower in ANGPTL3-/- mice than ANGPTL3+/+ mice, suggesting that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. CONCLUSION: ANGPTL3 was identified as a component of HDL in humans and mice. ANGPTL3 of HDL regulated cholesterol efflux and the anti-inflammatory functions of HDL in T2DM mice. Both the protein components of HDL and cholesterol efflux capacity of HDL were decreased in ANGPTL3-/- mice. Our findings suggest that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. Our study contributes to a more comprehensive understanding of the role of ANGPTL3 in lipid metabolism.


Subject(s)
Angiopoietin-Like Protein 3 , Diabetes Mellitus, Type 2 , Animals , Female , Humans , Mice , Angiopoietin-like Proteins , Cholesterol , Endothelial Cells , Intercellular Adhesion Molecule-1 , Lipoproteins, HDL , Triglycerides , Vascular Cell Adhesion Molecule-1
SELECTION OF CITATIONS
SEARCH DETAIL
...